Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1347817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273828

RESUMO

Background: Polysaccharide metal chelate exhibit both immunoregulatory activity and metal element supplementation effects. Methods: In this study, Ruoqiang jujube polysaccharide copper chelate (RJP-Cu) was prepared and the preparation conditions were optimized using the response surface method. Subsequently, RJP-Cu was administered to lambs to evaluate its impact on growth performance, copper ion (Cu2+) supplementation, immune enhancement, and intestinal flora was evaluated. Results: The results indicated that optimal RJP-Cu chelation conditions included a sodium citrate content of 0.5 g, a reaction temperature of 50°C, and a solution pH of 8.0, resulting in a Cu2+ concentration of 583°mg/kg in RJP-Cu. Scanning electron microscopy (SEM) revealed significant structural changes in RJP before and after chelation. RJP-Cu displaying characteristic peaks of both polysaccharides and Cu2+ chelates. Blood routine indexes showed no significant differences among the RJP-Cu-High dose group (RJP-Cu-H), RJP-Cu-Medium dose group (RJP-Cu-M), RJP-Cu-low dose group (RJP-Cu-L) and the control group (p > 0.05). However, compared with the control group, the RJP-Cu-H, M, and L dose groups significantly enhanced lamb production performance (p < 0.05). Furthermore, RJP-Cu-H, M, and L dose groups significantly increased serum Cu2+ concentration, total antioxidant capacity (T-AOC), catalase (CAT), and total superoxide dismutase (T-SOD) contents compared with control group (p < 0.05). The RJP-Cu-H group exhibited significant increases in serum IgA and IgG antibodies, as well as the secretion of cytokines IL-2, IL-4, and TNF-α compared to the control group (p < 0.05). Furthermore, RJP-Cu-H group increased the species abundance of lamb intestinal microbiota, abundance and quantity of beneficial bacteria, and decrease the abundance and quantity of harmful bacteria. The RJP-Cu-H led to the promotion of the synthesis of various Short Chain Fatty Acids (SCFAs), improvements in atrazine degradation and clavulanic acid biosynthesis in lambs, while reducing cell apoptosis and lipopolysaccharide biosynthesis. Conclusion: Thus, these findings demonstrate that RJP-Cu, as a metal chelate, could effectively promote lamb growth performance, increase Cu2+ content, and potentially induce positive immunomodulatory effects by regulating antioxidant enzymes, antibodies, cytokines, intestinal flora, and related metabolic pathways.

2.
Microb Pathog ; 172: 105801, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36170951

RESUMO

Salmonella spp. poses a great threat to the livestock, food safety and public health. A recombinant swinepox virus expressing a protective antigen sseB was constructed by homologous recombination to develop a vaccine against Salmonella infection. The rSPV-sseB was verified using PCR, Western blot and indirect immunofluorescence assay. The immune responses and protective efficacy of rSPV-sseB were assessed in piglets. Forty piglets were immunized with rSPV-sseB, inactive Salmonella vaccine, wild-type SPV (wtSPV), or PBS. The results showed that the level of the sseB-specific antibody of the rSPV-sseB-vaccinated piglets was significantly higher at all time points post-vaccination than those of the inactivated Salmonella vaccine (P < 0.05), wtSPV (P < 0.001) or mock treated piglets (P < 0.001). The IL-4 and IFN-γ in the rSPV-sseB group were significantly higher than the other three groups at all post-infection time points. rSPV-sseB provided piglets with strong protection against the challenge of S. typhimurium with lethal dose. These results suggest the possibility of using recombinant swinepox virus rSPV-sseB as a promising vaccine to prevent Salmonella infection.


Assuntos
Infecções por Salmonella , Vacinas contra Salmonella , Suipoxvirus , Animais , Suínos , Suipoxvirus/genética , Salmonella typhimurium/genética , Interleucina-4 , Vacinas Sintéticas
3.
Res Vet Sci ; 152: 61-71, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35932590

RESUMO

Given the central role of dendritic cells (DCs) in directing cell-mediated immunity, this study investigated the capability of Eimeria tenella 14-kDa phosphohistidine phosphatase (EtPHP14) to mature chicken DCs and initiate DC-induced T cell immunity. With the aim of identifying novel protective Eimeria antigen, EtPHP14 gene was successfully cloned and EtPHP14 recombinant protein (rEtPHP14) was expressed in Escherichia coli expression system. rEtPHP14 binding was identified on the surface of chicken DCs by Immunofluorescence assay. DC phenotypes were evaluated by flow cytometry and results indicated that MHCII, CD80, CD86, CD1.1 and CD11c were up-modulated in DCs following rEtPHP14 treatment. RT-qPCR showed increased transcript levels of DC maturation markers CCL5, CCR7 and CD83 in rEtPHP14-treated DCs. Moreover, transcript profile of genes associated with intracellular signaling pathways that characterize the immunogenic (TLR signaling) or tolerogenic (Wnt signaling) state of DCs revealed that TLR signaling was stimulated and Wnt signaling was inhibited in rEtPHP14-treated DCs. Furthermore, proliferation of T cells and differentiation of CD4+ cells were promoted when rEtPHP14-treated DCs were co-cultured with autologous T cells. DCs incubated with rEtPHP14 alone expressed increased IL-12 and IFN-γ levels while IL-10 and TGF-ß levels remained unaffected. Likewise, similar trend of IFN-γ expression was noted in rEtPHP14 treated DC-T cell coculture, whereas IL-4 expression remained unchanged. These findings indicate that EtPHP14 is an important molecule that can upregulate host immune response, particularly Th1, during host-parasite interaction, suggesting its importance as a novel candidate for coccidiosis vaccine.


Assuntos
Citocinas , Eimeria tenella , Animais , Citocinas/análise , Galinhas/metabolismo , Células Dendríticas , Monoéster Fosfórico Hidrolases/metabolismo , Diferenciação Celular , Células Th1/química , Células Th1/metabolismo
4.
Parasitol Res ; 121(6): 1699-1707, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35435508

RESUMO

Haemonchus contortus dynein light intermediate chain (HcLIC), an essential excretory/secretory protein of Haemonchus contortus, has been shown to have antigenic features. Neverthless, understanding of its immunomodulatory roles on host immune cells remains limited. Herein, HcLIC gene was amplified by polymerase chain reaction (PCR) and cloned in prokaryotic expression vector pET32a. The protein was expressed by IPTG and purified by affinity chromatography using HisTrap™ FF column. The localization of HcLIC in adult H. contortus woms was detected by immunohistochemical analysis. Immunofluorescence assay (IFA) was carried out to test the binding ability of rHcLIC to goat peripheral blood mononuclear cells (PBMCs). Furthermore, the effects of HcLIC on cell migration and cell apoptosis were evaluated when goat PBMCs were co-incubated with rHcLIC protein. The results revealed that rHcLIC was expressed in the cuticle tissues of adult H. contortus. IFA confirmed the binding of HcLIC on the surface of goat PBMCs. Moreover, functional analysis revealed that the interaction between rHcLIC and host immune cells significantly suppressed cell migration, suggesting that parasite might lessen the production of cytokines and chemokines that signal the migration of host immune cells towards infection site. Moreover, rHcLIC treatment improved cell apoptosis efficiency which might lower the immune cells quantity and thereby downregulate host immunity, enabling parasite survival within host. These results suggested that decrease trend of migration along with induction of apoptosis might be an immunosuppressive strategy of H. contortus. Overall, these findings add to our understanding of HcLIC, and the mechanisms involved in H. contortus immune escape during host-parasite interaction.


Assuntos
Hemoncose , Haemonchus , Animais , Proliferação de Células , Dineínas/metabolismo , Cabras/parasitologia , Hemoncose/veterinária , Proteínas de Helminto/metabolismo , Leucócitos Mononucleares/metabolismo , Óxido Nítrico/metabolismo , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...